

Discussion of Medical Suction for Exploration Medical Capability

J. B. McQuillen¹, J. Thompson², K. M. Gilkey¹ and S.W Hussey¹

¹NASA Glenn Research Center

²Umpqua Research Company

YUMAN RESEARCH PROG

Background

- Gap 4.09: "We do not have a system for medical suction and fluid containment that can operate properly in a reduced gravity environment."
- Effort focuses on development of two medical suction and fluid containment systems that can operate in a reduced gravity environment.
 - System for airway management, surgical and dental procedures.
 - System for treatment of a pneumothorax
- To date, NASA has a device packed in Physician Equipment Pack.
 - Current Device has not been used.
 - Training has revealed that device could come apart during usage and is difficult to operate.
 - Current Device is not suitable to meet the wide range of requirements for medical suction

- Ventilator (and intubation) Support
 - Anaphylaxis
 - Choking/Obstructed Airway
 - Decompression Sickness
 - Medication Overdose/Adverse Reaction
 - Radiation Sickness
 - Seizure
 - Smoke Inhalation
 - Surgical Treatment
 - Toxic Exposure
- Dental Suction
 - Abscess
 - Avulsion/Tooth Loss
 - Caries
 - Crown Replacement
 - Exposed Pulp/Pulpitis
 - Filling Replacement
- Nasogastric Suction
 - Intra-abdominal Infection (diverticulitis, appendicitis, small bowel obstruction)
- Surgical Treatment

Relevant Medical Conditions - Should

- Medical Conditions to be treated if Mass, Power & Volume Constraints Permit:
 - Surgical Suction
 - Abdominal Injury
 - Nasogastric Suction
 - Abdominal Injury
 - Chest Tube Suction
 - Chest Injury/Pneumothorax
 - Ventilator support:
 - Stroke
 - Sudden Cardiac Arrest

Suction Requirements

- Airway Management, Oropharyngeal Suction, And Surgical Suction:
 - Vacuum Pressure: 500 mm Hg
 - Flow Rate: 30 l/min
 - Total Duration: 30 min
 - Exposure Intervals: 15 seconds ON, 60 second OFF
- Dental Suction
 - Vacuum Pressure: 400 mm Hg
- Nasogastric Suction
 - Vacuum Pressure: < 120 mm Hg
- For chest tube drainage
 - Vacuum Pressure: 10-20 cm H₂0 (20-40 mm Hg)
 - Flow Rate: 20 l/min
 - Total Duration: 24 Hours
 - Heimlich Valve or Water Seal to prevent backflow.

Typical Vacuum System

- Generic Layout:
 - Patient/Object to be evacuated
 - Probe
 - Vacuum Regulation
 - Trap(s)
 - Hose/Line
 - Pump
 - Exhaust
- Medical Systems Differences:
 - Collection Devices or Vacuum Probe
 - Patient imposes sterility requirements and backflow prevention

Collection Probe

Exploration Medical Capability Gap 4.09

- Dependent on type of medical suction being performed:
- Behavior may be loosely approximated by Hagen-Poiseuille Equation

 $\Delta P = \frac{8\eta L}{\pi D^2} Q$

Where $\triangle P = Vacuum Level$

 η = Viscosity or Fluids Resistance to Flow

L = Tubing Length

Q = Flow Rate

D = Tubing Diameter

Viscosity will increase significantly if biofluid contains blood, tissue, debris, or other solids!

Probe

- Oropharyngeal Suction Yankauer suction tube
- Endotracheal Suction Combitube Double Lumen Device
- Nasogastric Suction -Salem-Sump Tube Double Lumen Device
- Pneumothorax Suction
 - Multiple eyelet catheter.
 - Check or one-way valve:
 - Heimlich if air only.
 - Current Water seal devices are not useable in reduced gravity

Water Seals

- Used for Pneumothorax
- Provide Vacuum Regulation
- Prevent backflow
- "Dry" before use, but requires filling with sterile water prior to use.
 - Source of sterile water?
 - Fluid transfer and positioning in reduced gravity
- Air bubbles through water-filled tubes in multiple chambers.
 - Indicates flow
 - Prevents backflow contamination
 - Relies on gravity to keep fluid in tubes.

- A Carrying Handle
- B High Negativity Relief Valve
- C High Negativity Float Valve and Relief Chamber
- D Collection Chamber
- E Patient Air Leak Meter (A-7000 only)
- F Calibrated Water Seal
- G Self-Sealing Diaphragm in Water Seal Chamber and Suction Control Chamber
- H Suction Control Chamber
- I Positive Pressure Relief Valve

Centralized Vacuum Source

- Available sources:
 - ISS Housekeeping vacuum cleaner
 - For Aeromedical Evacuation on C-130, USAF uses Urinal Source.
 - Requires check valve to prevent backflow
 - ISS has sufficient air flow rate for similar design.
- Need to require separate storage and/or treatment for biofluid and human waste. Avoid overboard venting/dumping
 - Contamination of sensitive surfaces: solar arrays, thermal radiators, antennas, etc.
 - Thrust associated with vented mass.

Traps

11

Exploration Medical Capability Gap 4.09

- Terrestrial systems use traps that are primarily gravity driven.
 - As fluid is deposited into trap, air escapes out of the top because it is lighter than the fluid.
 - As an added measure of capturing the fluid, a porous insert is used to retain the biofluid especially as the liquid level rises in the trap.
- Other methods for retaining fluid and venting air in microgravity are necessary.
 - Cyclonic flow is injected tangentially into a cylinder to centrifugally separate the gas and liquid

Capillary – surface tension and wetting phenomena are used to separate

the gas and liquid.

UMPQUA

UMPQUA Separator

12

Exploration Medical Capability Gap 4.09

- UMPQUA Research Company developed and tested a collapsible device containing a highly absorbent material.
- Device successfully tested using biofluid simulants:
 - Saline solution
 - Yogurt
 - 50/50 mixture of bovine blood and normal saline solution.
 - Cottage cheese

Biofluid Separator Concept

Yogurt Test Results

Summary

- Many conditions require suction.
- Wide range of flow rate and vacuum pressure requirements.
- Vacuum source needs to be defined given impacts to spacecraft systems and capabilities.
- Critical technology is biofluid separation AND containment.
- UMPQUA has developed and successfully tested a prototype separator.